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Introduction
• A time series is a series of data points 

indexed (or listed or graphed) in time order. 
Most commonly, a time series is a 
sequence taken at successive equally 
spaced points in time. 

• Time series analysis comprises methods for 
analyzing time series data in order to 
extract meaningful statistics and other 
characteristics of the data. Time series 
forecasting is the use of a model to predict 
future values based on previously observed 
values. 

From https://en.wikipedia.org/wiki/Time_series



Introduction
SigmaXL provides the following tools for 
exploratory data analysis of time series data:

• Run Chart

• Autocorrelation Function (ACF)/Partial 
Autocorrelation (PACF) Plots

• Cross Correlation (CCF) Plots with Pre-
Whiten Data option

• Seasonal Trend Decomposition Plots

• Spectral Density Plot with Detection of 
Seasonal Frequency



Introduction
SigmaXL provides the following methods for 
time series analysis and forecasting:

• Exponential Smoothing

• Exponential Smoothing – Multiple Seasonal 
Decomposition (MSD)

• ARIMA – Box-Jenkins Autoregressive 
Integrated Moving Average

• ARIMA with Predictors

• ARIMA – MSD



Introduction
• Typically, either Exponential Smoothing or 

ARIMA may be used.  It may be useful to 
try both to see which one gives a better 
model or use the average of the forecast 
from both methods.  

• If the data has negative autocorrelation, 
ARIMA is recommended.  

• If the data includes continuous or 
categorical predictors, use ARIMA with 
Predictors. 



Introduction
• If the data are seasonal (i.e., influenced by 

seasonal factors), SigmaXL requires that 
the seasonal frequency be specified.

• Frequency is the number of observations 
per “cycle” unit of time, so monthly sales 
would be specified as seasonal frequency = 
12 (observations per year).  Quarterly 
revenue would be specified as seasonal 
frequency = 4.  Hourly data would be 24 
(observations per day).  



Introduction
• Exponential Smoothing is limited to a 

maximum seasonal frequency of 24.  For 
higher frequencies use Exponential 
Smoothing – Multiple Seasonal 
Decomposition (MSD).  

• In MSD the seasonal component is first 
removed through decomposition, a 
nonseasonal exponential smooth model 
fitted to the remainder (+trend), and then 
the seasonal component is added back in.  

• As the name implies, Multiple Seasonal 
Decomposition (MSD) also accommodates 
multiple seasonality.



Introduction
• ARIMA does not have a theoretical 

frequency limit, but for computational 
efficiency and to minimize the potential loss 
of observations through differencing, we 
recommend using ARIMA – MSD for 
seasonal frequency greater than 52 (or with 
multiple frequencies).  

• Note, ARIMA with Predictors – MSD is not 
available.



Introduction
• ARIMA assumes that the time series is 

stationary, i.e., it has the property that the 
mean, variance and autocorrelation 
structure do not change over time.  

• If a time series mean is not stationary (e.g. 
trending), this can be corrected by 
differencing, computing the differences 
between consecutive observations for 
nonseasonal and between consecutive 
periods for seasonal data (e.g., Jan 2019 –
Jan 2018, etc.).  



Introduction
• If the variance changes over time, a Box-

Cox transformation may be applied to 
achieve constant variance.  

• Exponential Smoothing does not require 
stationarity.



SigmaXL Version 9
Time Series Forecasting Menu 



Autocorrelation
• Just as correlation measures the extent of a linear 

relationship between two variables, autocorrelation 
(AC) measures the linear relationship between 
lagged values of data.

• A plot of the data vs. the same data at lag will 
show a positive or negative trend. If the slope is 
positive, the AC is positive; if there is a negative 
slope, the AC is negative. 

• The Autocorrelation Function (ACF) formula is:

where is length of the time series [4].



Autocorrelation

Any statistically significant correlation ( ௞ ) will adversely 
affect the performance of a Shewhart control chart.  

The Ljung-Box test is used to determine if a group of 
autocorrelations are significant (see formula in Appendix).

Pearson correlations are used here for 
demonstration purposes. They are approximately 
equal to the ACF correlation values.



Example 1a: Box-Jenkins Series A - Chemical Process 

Concentration - Autocorrelation Function (ACF) Plot

SigmaXL > Time Series Forecasting > Autocorrelation (ACF/PACF) Plots 

Example 1: Chemical Process Concentration - Series A.xlsx - Concentration



Example 1a: Box-Jenkins Series A - Chemical Process 

Concentration - Run Chart

SigmaXL > Time Series Forecasting > Run Chart



Simple (Single) Exponential Smoothing 

Exponentially Weighted Moving Average (EWMA)

Forecasts are calculated using weighted averages, where 
the weights decrease exponentially as observations come 
from further in the past with the smallest weights 
associated with the oldest observations:

where  is the level smoothing parameter [4]. 



Simple (Single) Exponential Smoothing 

Exponentially Weighted Moving Average (EWMA)



Simple (Single) Exponential Smoothing 

Exponentially Weighted Moving Average (EWMA)

• An equivalent formulation for simple exponential 
smoothing is: 

with the starting forecast value (initial level) 
typically estimated as .



Simple (Single) Exponential Smoothing 

Exponentially Weighted Moving Average (EWMA)

• The smoothing parameter and initial level are 
determined by minimizing the sum-of-square 
forecast errors (residuals):

SSE

• As usual for any statistical model, the residuals 
should be normal, independent and identically 
distributed.  

• In SigmaXL, parameters are estimated by 
maximizing the Log-Likelihood function (which is 
similar to minimizing the residual sum-of-squares).



Model Selection and Information 
Criterion

– Akaike’s Information Criterion

AIC

where is the likelihood of the model and is
the total number of parameters and initial states
that have been estimated. 

– The AIC corrected for small sample bias (AICc) 
is defined as:

AICc AIC

– The Bayesian Information Criterion (BIC) is:

BIC AIC



• Given a set of candidate models for the data, the 
preferred model is the one with the minimum 
Information Criteria value:

– The Information Criteria rewards goodness of fit (as 
assessed by the likelihood function), but it also includes a 
penalty that is an increasing function of the number of 
estimated parameters. 

– The penalty discourages overfitting, because increasing 
the number of parameters in the model almost always 
improves the goodness of the fit.

Reference: 
https://en.wikipedia.org/wiki/Akaike_information_criterion

Model Selection and Information 
Criterion



Assess Forecast Accuracy
• Common forecast accuracy measures include:

Root mean squared error: RMSE mean

Mean absolute error: MAE mean

Mean absolute percentage error: MAPE

mean

Mean absolute scaled error: MASE mean

– Scale is the MAE of the in-sample naïve or seasonal naïve 
forecast (set all forecasts to be the value of the last 
observation/period)  

– A scaled error is less than one if it arises from a better forecast 
than the average naïve/seasonal naïve forecast. Conversely, it 
is greater than one if the forecast is worse than the average 
naïve forecast [4].



Assess Forecast Accuracy

• Types of forecast error:

– In-Sample One-Step-Ahead Forecast.  This is less useful 
because the model may be over-fitted.

– Out-of-Sample (Withhold) One-Step-Ahead.  Model parameter 
estimates do not use any withhold data, but the forecast 
updates with every new withhold observation. 

– Out-of-Sample (Withhold) Full Period Forecast. This is important 
if one is assessing forecast accuracy over a horizon.  This is 
used in forecast competitions.



Example 1b Demo of Simple Exponential 

Smoothing

Demo of Simple Exponential Smoothing - Concentration.xlsx



Demo of Simple Exponential Smoothing - Concentration.xlsx

Example 1b Demo of Simple Exponential 

Smoothing

Solver used to optimize alpha and initial level parameters. 



Example 1c: Box-Jenkins Series A - Chemical Process 

Concentration - Simple Exponential Smoothing (EWMA) 

Time Series Forecast

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast



Example 1c: Box-Jenkins Series A - Chemical Process 

Concentration - Simple Exponential Smoothing (EWMA) 

Time Series Forecast

Simple Exponential Smoothing (EWMA) specified. 95% Prediction Intervals for forecast.



Example 1c: Box-Jenkins Series A - Chemical Process 

Concentration - ACF Plots (Raw Data versus Residuals)



Autocorrelation: Ljung-Box Test
• In addition to looking at the ACF plot, we can also 

do a more formal test for autocorrelation by 
considering a whole set of values as a group, 
rather than treating each one separately.

where is the maximum lag being considered
and is the number of observations.

• If the autocorrelations did come from a white noise 
series, then would have a distribution with  
( − )  degrees of freedom, where is the number 
of parameters in the model [4].



Example 1c: Box-Jenkins Series A - Chemical Process 

Concentration - Ljung-Box P-Value Chart for Residuals

The previous ACF plots indicate that almost all of the correlation has been 
accounted for in the model, but the Ljung-Box plot shows that some 
significant autocorrelation still remains (P-Values < .05) - so the model can 
potentially be improved.  This does not mean that the model is a bad 
model, it can still be very useful for prediction purposes, but the prediction 
intervals may not provide accurate coverage.



Example 1c: Box-Jenkins Series A - Chemical Process 

Concentration - Residuals 

Residuals Plots

Residuals look good – approximately normal with  equal variance. 



Example 1d: Box-Jenkins Series A - Chemical Process 

Concentration – Automatic Model Selection and Withhold 

Sample (One-Step-Ahead)

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast



Example 1d: Box-Jenkins Series A - Chemical Process 

Concentration – Automatic Model Selection and Withhold 

Sample (One-Step-Ahead)



Example 2a: Box-Jenkins Series G – Monthly Airline 

Passengers - Run Chart

Data shows strong positive trend, strong seasonality 
(monthly data) and seasonal variance increases over time.

SigmaXL > Time Series Forecasting > Run Chart 

Example 2a: Monthly Airline Passengers – Series G.xlsx – Monthly Airline Passengers



Example 2b: Box-Jenkins Series G – Ln(Monthly Airline 

Passengers) - Run Chart

Data shows strong positive trend, strong seasonality 
(monthly data). Seasonal variance is now stable over time.

SigmaXL > Time Series Forecasting > Run Chart 

Example 2a: Monthly Airline Passengers – Series G.xlsx – Ln(Monthly Airline 
Passengers)



Example 2b: Box-Jenkins Series G – Ln(Monthly Airline 

Passengers) - Autocorrelation (ACF) Plot

SigmaXL > Time Series Forecasting > Autocorrelation (ACF/PACF) Plots



Example 2b: Box-Jenkins Series G – Ln(Monthly Airline 

Passengers)

Seasonal Decomposition Plots

SigmaXL > Time Series Forecasting > Seasonal Trend Decomposition Plots



Example 2b: Box-Jenkins Series G – Ln(Monthly Airline 

Passengers) - Spectral Density Plot

SigmaXL > Time Series Forecasting > Spectral Density Plot



Error, Trend, Seasonal (ETS) 
Exponential Smoothing Models

• Error, Trend, Seasonal (ETS) models 
expand on simple exponential smoothing to 
accommodate trend and seasonal 
components as well as additive or 
multiplicative errors.

• Simple Exponential Smoothing is an Error 
Model.

• Error, Trend model is Holt’s Linear, also 
known as double exponential smoothing.



Error, Trend, Seasonal (ETS) 
Exponential Smoothing Models

• Error, Trend, Seasonal model is Holt-Winters, 
also known as triple exponential smoothing.  
– Seasonal frequency must be specified: 

• Quarterly data = 4 (observations per year)

• Monthly data = 12 (observations per year)

• Daily data = 7 (observations per week)

• Hourly data = 24 (observations per day)

– Frequency is the number of observations per 
“cycle”. This is the opposite of the definition of 
frequency in physics, or in engineering Fourier 
analysis, where “period” is the length of the cycle, 
and “frequency” is the inverse of period.

Reference: https://robjhyndman.com/hyndsight/seasonal-periods/



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

• Rob Hyndman has developed a complete 
taxonomy that describes all of the combinations of 
exponential smooth models in a consistent manner. 
[4]

• Error: 

– Additive or Multiplicative

– The point forecasts produced by the models are identical 
if they use the same smoothing parameter values. 
Multiplicative will, however, generate different prediction 
intervals to accommodate change in variance.  

– An alternative to multiplicative is to use the Ln 
transformation (Box-Cox transformation with Lambda = 
0).

– Error models include the smoothing parameter and 
initial level value.



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

• Trend: 
– None, Additive, Additive Damped

– Multiplicative Trend is not recommended as they 
tend to produce poor forecasts

– Trend models add a smoothing parameter  
and initial trend value.

– Damped trend models add a smoothing 
parameter that “dampens” the trend to a flat 
line some time in the future.



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

• Seasonal: 
– None, Additive, Multiplicative

– Seasonal models add a smoothing parameter 
and initial seasonal values.

• # of initial values = seasonal frequency – 1

• constrained to sum to 0 for additive or 12 for 
multiplicative



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

Short hand
(Error, Trend, Seasonal)

Method

(A, N, N) Simple Exponential Smoothing with Additive Errors –
Exponentially Weighted Moving Average (EWMA)

(M, N, N) Simple Exponential Smoothing with Multiplicative Errors

(A, A, N) Additive Trend Method with Additive Errors (Holt's Linear)

(M, A, N) Additive Trend Method with Multiplicative Errors (Holt's Linear)

(A, A, A) Additive Trend, Additive Seasonal Method with Additive Errors 
(Holt-Winters)

(M, A, A) Additive Trend, Additive Seasonal Method with Multiplicative 
Errors (Holt-Winters)

(A, Ad, A) Additive Damped Trend, Additive Seasonal Method with 
Additive Errors

(M, Ad, A) Additive Damped Trend, Additive Seasonal Method with 
Multiplicative Errors



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast



Error, Trend, Seasonal (ETS) 
Automatic Model Selection

• AICc is recommended as the default 
Information Criteria, based on forecast error 
performance with M3 competition data (see 
appendix for more information on forecast 
competitions).

• Some of the model combinations lead to 
numerical instability and are not considered 
in the selection process: (A,N,M) (A,A,M) 
(A,Ad,M)

• If a Box-Cox transformation is used, 
Multiplicative models are not considered.



Example 2c: Box-Jenkins Series G – Monthly Airline 

Passengers – Automatic Model Selection, Box-Cox 

Transformation and Withhold Sample (Multi-Step-Ahead)

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast



Example 2c: Box-Jenkins Series G – Monthly Airline 

Passengers – Automatic Model Selection, Box-Cox 

Transformation and Withhold Sample (Multi-Step-Ahead)

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast

ETS Additive Trend, Additive Seasonal Method with Additive 
Errors (Holt-Winters) (A, A, A) automatically selected. Seasonal 
Frequency = 12 (Monthly data).



Box-Jenkins AutoRegressive Integrated 
Moving Average (ARIMA) Models

• An ARIMA model includes an Autoregressive (AR) 
component of order p, an Integrated/Differencing 
component of order d and a Moving Average 
component of order q and an optional constant.

• An ARIMA Seasonal model includes a Seasonal 
Autoregressive (SAR) component of order P, a 
Seasonal Integrated/Differencing component of 
order D and a Seasonal Moving Average 
component of order Q.



Box-Jenkins AutoRegressive Integrated 
Moving Average (ARIMA) Models

SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models - Stationarity

• ARIMA assumes that the time series is stationary, 
i.e., it has the property that the mean, variance and 
autocorrelation structure do not change over time.

• If a time series mean is not stationary (e.g. 
trending), this can be corrected by differencing, 
computing the differences between consecutive 
observations for non-seasonal and between 
consecutive periods (e.g. months) for seasonal 
data (Jan 2019 – Jan 2018, etc.).

• For non-seasonal, this may involve 1 or 2 orders of 
differencing. This order is the Integrated term d.

• For seasonal, this may involve 1 order of 
differencing. This order is the Seasonal Integrated 
term D.



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models - Stationarity

• If d+D = 0, a constant term in the model is the 
mean.

• If d+D = 1, a constant term in the model is a 
trend/drift.

• If d+D > 1, a constant term would be a quadratic 
trend, so constant should not be included.

• It is recommended that d+D should not be > 3.

• If the variance is not stationary, use a Box-Cox 
transformation.

• In the Ln(Monthly Airline Passenger) data we are 
starting with Ln data to deal with non-stationary 
variance in the raw data.



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models – AR

• In an autoregression model, we forecast the 
variable of interest using a linear 
combination of past values of the variable. 
The term autoregression indicates that it is 
a regression of the variable against itself.

where is white noise [4].



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models – MA

• Rather than using past values of the forecast 
variable in a regression, a moving average 
model uses past forecast errors in a regression-
like model [4].

• Model parameters are solved using Kalman 
Filters and nonlinear minimization.  This permits 
exact calculations (backcasting is not required) 
and can handle missing values.



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models 

If we combine differencing with autoregression and a 
moving average model, we obtain a non-seasonal 
ARIMA model.

where is the differenced series. 

• For seasonal, the model consists of terms that are 
similar to the non-seasonal components of the model. 
The seasonal model is ARIMA (P,D,Q) and combined 
we have ARIMA (p,d,q) (P,D,Q).



Partial Autocorrelation (PACF)
• Partial Autocorrelation plots are similar to 

Autocorrelation plots but adjust for correlation 
inherent in lags, e.g., and might be 
correlated, simply because they are both 
connected to , rather than because of any new 
information contained in [4].

• Each partial autocorrelation can be estimated as the 
last coefficient in an autoregressive model. Specifically, 

, the th partial autocorrelation coefficient, is equal 
to the estimate of in an AR( ) model.

• They are typically used in ARIMA to help determine 
the order of terms in the model, but are also useful 
as a general diagnostic tool.



Box-Jenkins AutoRegressive Integrated Moving 

Average (ARIMA) Models – Model Selection

• ACF and PACF plots may be used to assist 
in determining what order values to use, but 
this requires a high level of expertise.

• Hyndman and Khandakar [5] give a 
stepwise procedure to determine optimal 
order values:
– Use a Seasonal strength test to determine if 

D=0 or 1

– Use a test for stationarity (KPSS) to determine 
if d=0, 1 or 2

– With the differenced data, apply a stepwise 
procedure to solve for p, q, P, Q selecting 
models with minimum AICc. 



Example 2d: Box-Jenkins Series G – Monthly Airline 

Passengers – Automatic Model Selection, Box-Cox 

Transformation and Withhold Sample (Multi-Step-Ahead)

SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast



Example 2d: Box-Jenkins Series G – Monthly Airline 

Passengers – Automatic Model Selection, Box-Cox 

Transformation and Withhold Sample (Multi-Step-Ahead)

ARIMA (0,1,1) (0,1,1) automatically selected. Seasonal Frequency = 12 (Monthly data).



ARIMA with Predictors
• The ARIMA model supports continuous or 

categorical predictors, similar to multiple 
regression.

• In order to provide a forecast, additional predictor 
(X) values must be added to the dataset prior to 
running the analysis.  The number of forecast 
periods will be equal to the number of additional 
predictor rows.  Alternatively, the predictor values 
from a withhold sample may be used. 

• As with multiple linear regression, predictors 
should not be strongly correlated.



Example 3: Daily Electricity Demand with Temperature and 

Work Day Predictors – Run Charts 

SigmaXL > Time Series Forecasting > Run Chart 

Example 3: Daily Electricity Demand with Predictors – ElecDaily.xlsx
Victoria, Australia, 2014.



Example 3: Daily Electricity Demand with Temperature and 

Work Day Predictors – Scatterplot and Box Plot 

SigmaXL > Graphical Tools > Scatterplots

SigmaXL > Graphical Tools > Boxplots 

Example 3: Daily Electricity Demand with Predictors – ElecDaily.xlsx
Victoria, Australia, 2014.



Example 3: Daily Electricity Demand with Temperature and 

Work Day Predictors – ARIMA Forecast with Predictors 

SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast with Predictors



Example 3: Daily Electricity Demand with Temperature and 

Work Day Predictors – ARIMA Forecast with Predictors 
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