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SigmaXL V9: Time Series Forecasting

® Introduction
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®* Example 1. Chemical Process
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* Simple Exponential Smoothing
® Information Criteria
® Forecast Accuracy



SigmaXL V9: Time Series Forecasting

* Example 2: Monthly Airline
Passengers

®* Seasonal Trend Decomposition Plots
® Spectral Density Plots

® Error, Trend, Seasonal (ETS)
Exponential Smoothing models



SigmaXL V9: Time Series Forecasting

® Autoregressive Integrated Moving
Average (ARIMA) models

® Partial Autocorrelation
* ARIMA with Predictors

* Example 3: Electricity Demand with
Temperature and Work Day Predictors

* References/Questions/Appendix



Introduction

®* Atime series is a series of data points
iIndexed (or listed or graphed) in time order.
Most commonly, a time series is a
sequence taken at successive equally
spaced points in time.

®* Time series analysis comprises methods for
analyzing time series data in order to
extract meaningful statistics and other
characteristics of the data. Time series
forecasting is the use of a model to predict
future values based on previously observed
values.

From https://en.wikipedia.org/wiki/Time series




Introduction

SigmaXL provides the following tools for
exploratory data analysis of time series data:

® Run Chart

® Autocorrelation Function (ACF)/Partial
Autocorrelation (PACF) Plots

® Cross Correlation (CCF) Plots with Pre-
Whiten Data option

®* Seasonal Trend Decomposition Plots

* Spectral Density Plot with Detection of
Seasonal Frequency



Introduction

SigmaXL provides the following methods for
time series analysis and forecasting:

* Exponential Smoothing

* Exponential Smoothing — Multiple Seasonal
Decomposition (MSD)

* ARIMA - Box-Jenkins Autoregressive
Integrated Moving Average

* ARIMA with Predictors
* ARIMA - MSD



Introduction

* Typically, either Exponential Smoothing or
ARIMA may be used. It may be useful to
try both to see which one gives a better
model or use the average of the forecast
from both methods.

* If the data has negative autocorrelation,
ARIMA is recommended.

® |f the data includes continuous or

categorical predictors, use ARIMA with
Predictors.



Introduction

* If the data are seasonal (i.e., influenced by
seasonal factors), SigmaXL requires that
the seasonal frequency be specified.

®* Frequency is the number of observations
per “cycle” unit of time, so monthly sales
would be specified as seasonal frequency =
12 (observations per year). Quarterly
revenue would be specified as seasonal
frequency = 4. Hourly data would be 24

(observations per day).



Introduction

* Exponential Smoothing is limited to a
maximum seasonal frequency of 24. For
higher frequencies use Exponential
Smoothing — Multiple Seasonal
Decomposition (MSD).

®* In MSD the seasonal component is first
removed through decomposition, a
nonseasonal exponential smooth model
fitted to the remainder (+trend), and then
the seasonal component is added back in.

* As the name implies, Multiple Seasonal
Decomposition (MSD) also accommodates
multiple seasonality.



Introduction

* ARIMA does not have a theoretical
frequency limit, but for computational
efficiency and to minimize the potential loss
of observations through differencing, we
recommend using ARIMA — MSD for

seasonal frequency greater than 52 (or with
multiple frequencies).

®* Note, ARIMA with Predictors — MSD is not
available.



Introduction

* ARIMA assumes that the time series is
stationary, i.e., it has the property that the
mean, variance and autocorrelation
structure do not change over time.

* If a time series mean is not stationary (e.qg.
trending), this can be corrected by
differencing, computing the differences
between consecutive observations for
nonseasonal and between consecutive
periods for seasonal data (e.g., Jan 2019 —
Jan 2018, etc.).



Introduction

* If the variance changes over time, a Box-
Cox transformation may be applied to
achieve constant variance.

* Exponential Smoothing does not require
stationarity.



SigmaXL Version 9
Time Series Forecasting Menu
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Forecasting ~ Dialog =

Run Chart

Autocorrelation (ACF/PACF) Plots
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Exponential Smoothing Control Chart *
ARIMA Forecast ’
ARIMA Control Chart 4

Utilities 4



Autocorrelation

® Just as correlation measures the extent of a linear
relationship between two variables, autocorrelation
(AC) measures the linear relationship between
lagged values of data.

* Aplot of the data vs. the same data at lag k will
show a positive or negative trend. If the slope is
positive, the AC is positive; if there is a negative
slope, the AC is negative.

®* The Autocorrelation Function (ACF) formula is:
T — —
= St=ktl Ve = Y)Wk — ¥)
k — T —\ 2
=1 Ve —Y)

where T is length of the time series [4].




Autocorrelation
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Any statistically significant correlation (r, > 2/vN) will adversely
affect the performance of a Shewhart control chart.

The Ljung-Box test is used to determine if a group of
autocorrelations are significant (see formula in Appendix).




Example 1a: Box-Jenkins Series A - Chemical Process

Concentration - Autocorrelation Function (ACF) Plot

Autocorrelation Function (ACF) Plot
Significance Limit Alpha = 0.05
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Autocorrelation - Concentration

SigmaXL > Time Series Forecasting > Autocorrelation (ACF/PACF) Plots

Example 1: Chemical Process Concentration - Series A.xlsx - Concentration




Run Chart: Concentration

Example 1a: Box-Jenkins Series A - Chemical Process

Concentration - Run Chart
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SigmaXL > Time Series Forecasting > Run Chart




Simple (Single) Exponential Smoothing
Exponentially Weighted Moving Average (EWMA)

Forecasts are calculated using weighted averages, where
the weights decrease exponentially as observations come
from further in the past with the smallest weights
associated with the oldest observations:

Veri=ayeta(l—a) ypoi+a(l—a)® yp + -

where 0 < a < 1 is the level smoothing parameter [4].



Simple (Single) Exponential Smoothing
Exponentially Weighted Moving Average (EWMA)

Weights for Different Alpha Values
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Simple (Single) Exponential Smoothing
Exponentially Weighted Moving Average (EWMA)

®* An equivalent formulation for simple exponential
smoothing is:

Vi1 = aye + (1 —a)y;

with the starting forecast value (initial level) y;
typically estimated as y;.



Simple (Single) Exponential Smoothing
Exponentially Weighted Moving Average (EWMA)

®* The smoothing parameter and initial level are
determined by minimizing the sum-of-square
forecast errors (residuals):
T

T
SSE =z Ve — ¥)? =z ef.
t=1

t=1

® As usual for any statistical model, the residuals
should be normal, independent and identically
distributed.

* In SigmaXL, parameters are estimated by
maximizing the Log-Likelihood function (which is
similar to minimizing the residual sum-of-squares).



Model Selection and Information
Criterion

— Akaike’s Information Criterion
AIC = —2log (L) + 2k,

where L is the likelihood of the model and k is
the total number of parameters and initial states
that have been estimated.

— The AIC corrected for small sample bias (AlICc)
is defined as:

k(k+1)

T—k—1"

— The Bayesian Information Criterion (BIC) is:
BIC = AIC + k[log (T) — 2]

AIC; = AIC +



Model Selection and Information
Criterion

®* Given a set of candidate models for the data, the
preferred model is the one with the minimum
Information Criteria value:

— The Information Criteria rewards goodness of fit (as
assessed by the likelihood function), but it also includes a
penalty that is an increasing function of the number of
estimated parameters.

— The penalty discourages overfitting, because increasing
the number of parameters in the model almost always
improves the goodness of the fit.

Reference:
https://en.wikipedia.org/wiki/Akaike information_criterion



Assess Forecast Accuracy

®* Common forecast accuracy measures include:

Root mean squared error: RMSE = \/mean(etz)
Mean absolute error: MAE = mean(|e;|)

Mean absolute percentage error: MAPE

100e, )

Mean absolutte scaled error: MASE = mean(|e;|)/scale

= mean (

— Scale is the MAE of the in-sample naive or seasonal naive
forecast (set all forecasts to be the value of the last
observation/period)

— A scaled error is less than one if it arises from a better forecast
than the average naive/seasonal naive forecast. Conversely, it
is greater than one if the forecast is worse than the average
nailve forecast [4].



Assess Forecast Accuracy

® Types of forecast error:

— In-Sample One-Step-Ahead Forecast. This is less useful
because the model may be over-fitted.

— OQut-of-Sample (Withhold) One-Step-Ahead. Model parameter
estimates do not use any withhold data, but the forecast
updates with every new withhold observation.

— Qut-of-Sample (Withhold) Full Period Forecast. This is important
if one is assessing forecast accuracy over a horizon. This is
used in forecast competitions.



Example 1b Demo of Simple Exponential
Smoothing

| Obs. No. | Concentration [y} | One-step-ahead forecast [y-hat)| Residuals () Exponential Smoothing Exponential Smoothing In-Sample
dll 17 17 0 Model Parameters Model Statistics Forecast Accuracy Metrics
2 16.6 17 -0.4 0.1 Count 197 RMSE 0.332916231
3 16.3 16.96 -0.66 17 kterms L) MAE 0.271930445
4 16.1 16.894 -0.794 Log-Likelihood | -303.72228 NMAPE 1.592107249
5 171 16.8146 0.2854 Use Solver to obtain parameter values that minimize S5E: AlCc 613.56892 Scale (MR-bar) 0.275510204
6 16.9 16.84314 0.05686 | SS5E | 21.8341' AlC 613.44457 MASE 0.9870068
74 16.8 16.848826 -0.048826 BIC 623.29418
8 17.4 16.8439434 0.5560566
9 17.1 16.89954906 0.20045094 185
10 17 16.91959415 0.080405846
11 16.7 16.92763474 -0.227634739
12 17.4 16.90487126 0.495128735
13 17.2 16.95438414 0.245615862
14 17.4 16.97854572 0.421054276
15 17.4 17.02105115 0.378948848
16 17 17.05894604 -0.058946037
17 17.3 17.05305143 0.246948567
13 17.2 17.07774629 0.12225371
19 17.4 17.08997166 0.310028339
20 16.8 17.12057449 -0.320974455
21 17.1 17.08887705 0.011122955
22 17.4 17.08998934 0.310010659
23 17.4 17.12099041 0.279009593
LS 17.5 17.14889137 0.351108634 e e
25 17.4 17.18400223 0.215997771 frbnibatn i i SR e M - G BT o B SRR R B e e R = = R Bl e s e 5 B o R B R . . S e
26 17.6 17.20560201 0.354397954 ® Concentration (y) =g Oni2-step-shead forecast (y-hat)
27 17.4 17.24504181 0.154958194

160

Demo of Simple Exponential Smoothing - Concentration.xlsx




Example 1b Demo of Simple Exponential
Smoothing

Exponential Smoothing Exponential Smoothing In-Sample

Model Parameters Model Statistics Forecast Accuracy Metrics
alpha 0.234591 Count 197 RMSE 0.316569323
initial level | 16.7319 kterms 2 MAE 0.247320195
Log-Likelihood | -293.8036 MAPE 1.446469239
Use Solver to obtain parameter values that minimize SSE: AlCc 593.73153 Scale (MR-bar) 0.275510204
S5E | 19.?426' AlC 593.6072 MASE 0.897680708

BIC 603.45681
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& Concentration (y) g Cne-step-ahead forecast (y-hat)

Solver used to optimize alpha and initial level parameters.

Demo of Simple Exponential Smoothing - Concentration.xlsx




Example 1c: Box-Jenkins Series A - Chemical Process

Concentration - Simple Exponential Smoothing (EWMA)
Time Series Forecast

Exponential Smoothing Forecas t

Obsersation Mo,

Numeric Time Series Data () >>

| Concentration

0K >>

Optional Time Axis Labels >> ‘ |

MNo. of Forecast Periods | 24

Prediction Interval

[ Specity Model Periods

T | e

n
-

<< Remove |

Model Options

[ Seasonal Frequency

—

95.0 %

- |

Cancel

dile

Help

v Display ACF/PACF/LB FPlots

¥ Display Residual Plots

[ Box-Cox Transformation

o

=) o

~

Exponential Smeothing Options

" Automatic Model Selection

* iSpecify Mode|

Cancel
Error Trend Help
= Additive " None
" Multiplicative " Additive
" Additive Damped € Mul

Sirmple Exponential Smoothing with Additive Errars (A, N, N) - Exponentially
Waighted Moving Average (Evviidy)

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast




Example 1c: Box-Jenkins Series A - Chemical Process

Concentration - Simple Exponential Smoothing (EWMA)

Exponential Smoothing Time Series Forecast Chart
95.0% Prediction Intervals
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Exponential Smoothing Model: Simple Exponential Smoothing with Additive Errors {A, N, N) - Exponentially Weighted Moving Average (EWMA) - User Specified Model
Model Periods: All observations are used in the Exponential Smoothing model estimation. No withhold periods available for out-of-sample forecast accuracy evaluation.

Exponential Smoothing Model Information Parameter Estimates Exponential Smoothing Model Statistics Forecast Accuracy
Seasonal Frequency 1 Term Coefficient No. of Obsemvations 197 In-Sample (Estimation) Out-of-Sample (Withhold)
Model Selection Criterion Specified alpha (level smoothing)| 0.294785988 DF 195 Metric | One-Step-Ahead Forecast One-Step-Ahead Forecast
Box-Cox Transformation NIA, | (initial level) 16.73121246 StDev 0.318189 N 197
Lambda Variance 0.101244 RMSE 0.316569334
Threshold Log-Likelihood -293.804 MAE 0.247329038
AlCc 593.7316 MAPE 1.446520183
AlC 593.6072 MASE 0.897712804
BIC 503.4568

Simple Exponential Smoothing (EWMA) specified. 95% Prediction Intervals for forecast.




Example 1c: Box-Jenkins Series A - Chemical Process

Concentration - ACF Plots (Raw Data versus Residuals)

Autocorrelation Function (ACF) Plot
Significance Limit Alpha = 0.05

0.8
0.6

0.4 -
0.2 - I
0

04 -
06
-0.8 -

Autocorrelation - Concentration
o
N
I

123456 7 8 91011121314151617181920212223
Lag

Autocorrelation Function (ACF) Plot - Residuals
Significance Limit Alpha = 0.05
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Autocorrelation: Ljung-Box Test

* |n addition to looking at the ACF plot, we can also
do a more formal test for autocorrelation by
considering a whole set of r;, values as a group,
rather than treating each one separately.

h
Q =T(T +2) (T — k)~ 1rs,

where h is the maximum lag being considered
and T is the number of observations.

* If the autocorrelations did come from a white noise
series, then Q would have a y* distribution with
(h — k) degrees of freedom, where k is the number
of parameters in the model [4].



Example 1c: Box-Jenkins Series A - Chemical Process

Concentration - Ljung-Box P-Value Chart for Residuals

Ljung-Box (LB) P-Value - Residuals
Significance Limit Alpha = 0.05

Ljung-Box P-Value - Residuals
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The previous ACF plots indicate that almost all of the correlation has been
accounted for in the model, but the Ljung-Box plot shows that some
significant autocorrelation still remains (P-Values < .05) - so the model can
potentially be improved. This does not mean that the model is a bad
model, it can still be very useful for prediction purposes, but the prediction
intervals may not provide accurate coverage.




Example 1c: Box-Jenkins Series A - Chemical Process

Concentration - Residuals

Histogram of Residuals for Concentration

Normal Probability Plot of Residuals for: Concentration

Residuals look good — approximately normal with equal variance.
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Example 1d: Box-Jenkins Series A - Chemical Process
Concentration — Automatic Model Selection and Withhold
Sample (One-Step-Ahead)

Exponential Smoothing Forecast b4 Exponential Smoothing Options b4
Observation Mo @ ‘Automatic Model Selection
e ic Ti i Concentration =

MNumeric Time Series Data (Y) >> | | OK >> ¢ Specity Model
2 Cancel
Optional Time Axis Labels >> | | M Model Selection Criterion M
= Help * AICc - Akaike information criterion with small sample size correction

" AIC - Akaike information criterion
<< Bemove |

" BIC - Bayesian information criterion

: i lv Display ACF/PACF/LB Flots
Model Options

Prediction Interval 950 % ¥ Display Residual Plots

v Specify Model Periods I Seasonal Frequency [ Box-Cox Transformation
Start Model at Period 0 = |
 Withhold Periods 24 c 2

" End Model at Period & &

Withhold Forecast Type:
* One-Step-Ahead with Prediction Interval at:| Start of Withhold

I Include in Residuals
" Multi-Step-Ahead with Prediction Interval at Start of Withhhold.

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast




Example 1d: Box-Jenkins Series A - Chemical Process
Concentration — Automatic Model Selection and Withhold
Sample (One-Step-Ahead)

Exponential Smoothing Time Series ForecastChart
95.0% Prediction Intervals

18.10 .

17.60 -

Forecast: Concentration

A A B AR A AR A SO R I AR )

Time Period

Exponential Smoothing Model: Simple Exponential Smoothing with Multiplicative Errors (M, N, N} - Model Automatically Selected
Model Periods: Model parameter estimates calculated excluding 24 withhold periods.

Exponential Smoothing Model Information Parameter Estimates Exponential Smoothing Model Statistics Forecast Accuracy
Seasonal Frequency 1 Term Coefficient No. of Observations 173 In-Sample (Estimation) Out-of-Sample (Withhold)
Model Selection Criterion AlCc alpha {level smoothing) | 0.303967286 DF 171 Metric | One-Step-Ahead Forecast One-Step-Ahead Forecast
Box-Cox Transformation NIA | {initial level) 16.73554259 StDev 0.01841 N 173 24
Lambda Variance 0.000339 RMSE 0.31133921 0.35209899
Threshold Log-Likelihood -243.805 MAE 0.243032918 0.273389284
AlCc 493.7523 MAPE 1.425751706 1.567334268
AIC 493.6102 MASE 0.878186174 0.987877246
BIC 503.0701




Example 2a: Box-Jenkins Series G — Monthly Airline

Passengers - Run Chart
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Data shows strong positive trend, strong seasonality
(monthly data) and seasonal variance increases over time.

SigmaXL > Time Series Forecasting > Run Chart

Example 2a: Monthly Airline Passengers — Series G.xlsx — Monthly Airline Passengers




Example 2b: Box-Jenkins Series G — Ln(Monthly Airline

Passengers) - Run Chart
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Data shows strong positive trend, strong seasonality
(monthly data). Seasonal variance is now stable over time.

SigmaXL > Time Series Forecasting > Run Chart

Example 2a: Monthly Airline Passengers — Series G.xlsx — Ln(Monthly Airline
Passengers)




Example 2b: Box-Jenkins Series G — Ln(Monthly Airline

Passengers) - Autocorrelation (ACF) Plot

Autocorrelation Function (ACF) Plot
Significance Limit Alpha = 0.05
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Autocorrelation - Ln (Airline
Passengers)

SigmaXL > Time Series Forecasting > Autocorrelation (ACF/PACF) Plots




Ln{Airline Passengers)

Example 2b: Box-Jenkins Series G — Ln(Monthly Airline

Passengers)

Smoothed Trend

Seasonal Trend Decomposition Plot
Additive Model ;

—Smoothed Trend
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Time Period

SigmaXL > Time Series Forecasting > Seasonal Trend Decomposition Plots




Example 2b: Box-Jenkins Series G — Ln(Monthly Airline

Passengers) - Spectral Density Plot

Spectral Density
Max. Peak Frequency =12
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SigmaXL > Time Series Forecasting > Spectral Density Plot

30



Error, Trend, Seasonal (ETS)
Exponential Smoothing Models

® Error, Trend, Seasonal (ETS) models
expand on simple exponential smoothing to
accommodate trend and seasonal
components as well as additive or
multiplicative errors.

* Simple Exponential Smoothing is an Error
Model.

® Error, Trend model is Holt's Linear, also
known as double exponential smoothing.



Error, Trend, Seasonal (ETS)
Exponential Smoothing Models

® Error, Trend, Seasonal model is Holt-Winters,
also known as triple exponential smoothing.

— Seasonal frequency must be specified:
® Quarterly data = 4 (observations per year)
®* Monthly data = 12 (observations per year)
* Daily data = 7 (observations per week)

* Hourly data = 24 (observations per day)

— Frequency is the number of observations per
“‘cycle”. This is the opposite of the definition of
frequency in physics, or in engineering Fourier
analysis, where “period” is the length of the cycle,
and “frequency’ is the inverse of period.

Reference: https://robjhyndman.com/hyndsight/seasonal-periods/



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

®* Rob Hyndman has developed a complete
taxonomy that describes all of the combinations of
exponential smooth models in a consistent manner.

[4]
® Error:
— Additive or Multiplicative

— The point forecasts produced by the models are identical
if they use the same smoothing parameter values.
Multiplicative will, however, generate different prediction
intervals to accommodate change in variance.

— An alternative to multiplicative is to use the Ln

transformation (Box-Cox transformation with Lambda =
0).

— Error models include the smoothing parameter a and
initial level value.



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

®* Trend:
— None, Additive, Additive Damped

— Multiplicative Trend is not recommended as they
tend to produce poor forecasts

— Trend models add a smoothing parameter
f and initial trend value.

— Damped trend models add a smoothing

parameter ¢ that “dampens” the trend to a flat
line some time in the future.



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

® Seasonal:

— None, Additive, Multiplicative
— Seasonal models add a smoothing parameter y
and initial seasonal values.
® # of initial values = seasonal frequency — 1

®* constrained to sum to O for additive or 12 for
multiplicative



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

Short hand
(Error, Trend, Seasonal)

(A, N, N) Simple Exponential Smoothing with Additive Errors —
Exponentially Weighted Moving Average (EWMA)

(M, N, N) Simple Exponential Smoothing with Multiplicative Errors
(A, A, N) Additive Trend Method with Additive Errors (Holt's Linear)
(M, A, N) Additive Trend Method with Multiplicative Errors (Holt's Linear)
(A, A, A) Additive Trend, Additive Seasonal Method with Additive Errors
(Holt-Winters)
(M, A, A) Additive Trend, Additive Seasonal Method with Multiplicative
Errors (Holt-Winters)
(A, Ad, A) Additive Damped Trend, Additive Seasonal Method with
Additive Errors
(M, Ad, A) Additive Damped Trend, Additive Seasonal Method with

Multiplicative Errors



Error, Trend, Seasonal (ETS) models
Hyndman’s Taxonomy

Exponential Model Selection

X
(" Automatic Model Selection OK >>
(¢ Specify Model
Realy << Back
Error Trend Seasonal Help
(¢ 1 Additive (¢ 1 None (¢ 1 None
(" 2 Multiplicative (" 2 Additive (" 2 Additive

(" 3 Additive Damped " 3 Multiplicative

Simple Exponential Smoothing with Additive Errors (A, N, N) - Exponentially Weighted
Moving Average (EWMA)

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast




Error, Trend, Seasonal (ETS)
Automatic Model Selection

®* AlICc is recommended as the default
Information Criteria, based on forecast error
performance with M3 competition data (see
appendix for more information on forecast
competitions).

®* Some of the model combinations lead to
numerical instability and are not considered
in the selection process: (A,N,M) (A,A,M)
(A,Ad,M)

* If a Box-Cox transformation is used,
Multiplicative models are not considered.



Example 2c: Box-Jenkins Series G — Monthly Airline
Passengers — Automatic Model Selection, Box-Cox
Transformation and Withhold Sample (Multi-Step-Ahead)

Exponential Smoothing Forecast X Exponential Smoothing Options
Gpe o, Numeric Time Series Data (¥) »>> | konthly Airline Passenger “ lAutomatic Model Selection OK >>
Ln (Aitline Passengers) = ) —
" Specify Model

Cancel

il

- : > Cancel
Optional Time Axis Labels >> | | Date Hel
Model Selection Criterion —elp
Help
* AICc - Akaike information criterion with small sample size correction
<< Remove |

" AIC - Akaike information criterion

" BIC - Bayesian information criterion

] i v Display ACF/PACF/LB Plots
Model Options

Prediction Interval 950 % ¥ Display Residual Plots

¥ Specify Model Periods ¥ Seasonal Frequency ¥ Box-Cox Transformation
Start Model at Period ,1— * Specify ,T * Rounded Lambda

& Withhold Periods | 24 | C Select [ oo, <] ¢ Optimal Lambda

" End Model at Period ,— " Automatically Detect " Lambda & Threshold (Shift)

Withhold Forecast Type:

" One-Step-Ahead with Prediction Interval at:| Start of Withhold ~

I Include in Residuals
* Multi-Step-Ahead with Prediction Interval at Start of Withhhold.

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast




Example 2c: Box-Jenkins Series G — Monthly Airline

Passengers — Automatic Model Selection, Box-Cox
Transformation and Withhold Sample (Multi-Step-Ahead)

Exponential Smoothing Time Series Forecast Chart
95.0% Prediction Intervals
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Forecast: Monthly Airline Passengers (Thousands)
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Date
ial g Model: Additive Trend, Additi | Method with Additive Errors (Holt-Winters) (A, A, A) - Model Automatically Selected
MDdEI Periods: MDdEI parameter estimates calculated excluding 24 withhold periods.
Expi ial Si thing Model Information F Esti Expi ial Si hing Model Statisti Forecast Accuracy
Seasonal Frequency 12 Term Coefficient Mo_ of Observations 120 In-Sample {Estimation) OQut-of-Sample (Withhold)
Model Selection Criterion AlCc alpha (level smoothing) 0770415301 DF 104 Metric | One-Step-Ahead Forecast Multi-Step-Ahead Forecast
Box-Cox Transformation Rounded Lambda beta (trend smoothing) 0.0001 StDev 0.037144 N 120 24
Lambda 0 gamma (seasonal smoothing) 0.0001 Variance 0.00138 RMSE 8.67099231 33.06342473
Threshold 0 I (initial level) 480925762 Log-Likelihood 116.4916 MAE 6481327147 27.83270693
b (initial trend) 0.00935261 AlCe -192.983 WMAPE 2.730421504 5.80549634
s1 (initial seasonal) -0.099989196 AlC -198.983 MASE 0.226825448 0.974054552
s2 (initial seasonal) -0.217929483 BIC -151.596
53 (initial seasonal) -0.076652841
e ososr| | E 1S Additive Trend, Additive S | Method with Additi
25 il seasona) | 0.191g7007 itive Trend, itive Seasonal Method wit itive
s6 (initial seasonal) 0.205968013 . -
smmsesena) | ez | | ErFrOrs (Holt-Winters) (A, A, A) automatically selected. Seasonal
s8 (initial seasonal) -0.016634733
59 [initial seasonzl) 0.008278553 F q y = 1 2 (M h Iy d )
: requenc ont ata).
511 (initial seasonal) -0.101347496
512 (initial seasonal) -0.089165324

SigmaXL > Time Series Forecasting > Exponential Smoothing Forecast > Forecast




Box-Jenkins AutoRegressive Integrated
Moving Average (ARIMA) Models

®* An ARIMA model includes an Autoregressive (AR)
component of order p, an Integrated/Differencing
component of order d and a Moving Average
component of order g and an optional constant.

®* An ARIMA Seasonal model includes a Seasonal
Autoregressive (SAR) component of order P, a
Seasonal Integrated/Differencing component of
order D and a Seasonal Moving Average
component of order Q.



Box-Jenkins AutoRegressive Integrated
Moving Average (ARIMA) Models

ARIMA Model Selection X

" Automatic Model Selection

OK >>
» Specify Model
pecify << Back
Nonseasonal Order Seasonal Order Help
AR - Autoregressive (p) 0 SAR - Seasonal Autoregressive (P) 0
| — Integrated/Differencing (d) 1 Sl - Seasonal Integrated/Differencing (D) 1
MA - Moving Average (q) 1 SMA - Seasonal Moving Average (Q) 1‘

[ Include Constant (Mean if d & D = 0; Trend/Driftif d or D = 1)

SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast




Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models - Stationarity

* ARIMA assumes that the time series is stationary,
l.e., it has the property that the mean, variance and
autocorrelation structure do not change over time.

* |f atime series mean is not stationary (e.g.
trending), this can be corrected by differencing,
computing the differences between consecutive
observations for non-seasonal and between
consecutive periods (e.g. months) for seasonal
data (Jan 2019 — Jan 2018, etc.).

®* For non-seasonal, this may involve 1 or 2 orders of
differencing. This order is the Integrated term a.

® For seasonal, this may involve 1 order of
differencing. This order is the Seasonal Integrated
term D.



Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models - Stationarity

* |[fd+D = 0, a constant term in the model is the
mean.

* [fd+D =1, a constant term in the model is a
trend/drift.

* Ifd+D > 1, a constant term would be a quadratic
trend, so constant should not be included.

®* |tis recommended that d+D should not be > 3.

* |If the variance is not stationary, use a Box-Cox
transformation.

* In the Ln(Monthly Airline Passenger) data we are
starting with Ln data to deal with non-stationary
variance in the raw data.



Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models — AR

® In an autoregression model, we forecast the
variable of interest using a linear
combination of past values of the variable.
The term autoregression indicates that it is
a regression of the variable against itself.

Vi=C+ P1Yi1 + PVip + -+ PpVip + &

where &; Is white noise [4].



Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models — MA

® Rather than using past values of the forecast
variable in a regression, a moving average
model uses past forecast errors in a regression-
like model [4].

Vi=C+t& + 0161 +0,6 5+ +0,6_4

®* Model parameters are solved using Kalman
Filters and nonlinear minimization. This permits
exact calculations (backcasting is not required)
and can handle missing values.



Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models

If we combine differencing with autoregression and a
moving average model, we obtain a non-seasonal

ARIMA model.
y{“ =C+ ¢1y{“—1 Tt ¢py{“—p + ngt—l Tt Hqgt—q T &

where y/ is the differenced series.

®* For seasonal, the model consists of terms that are
similar to the non-seasonal components of the model.
The seasonal model is ARIMA (P.D,Q) and combined

we have ARIMA (p,d,q) (P.D, Q).



Partial Autocorrelation (PACF)

® Partial Autocorrelation plots are similar to
Autocorrelation plots but adjust for correlation

iInherent in lags, e.qg., y; and y,_, might be
correlated, simply because they are both
connected to y,_,, rather than because of any new
information contained in y;_, [4].

® Each partial autocorrelation can be estimated as the
last coefficient in an autoregressive model. Specifically,
ay, the kth partial autocorrelation coefficient, is equal
to the estimate of @, in an AR(k) model.

®* They are typically used in ARIMA to help determine
the order of terms in the model, but are also useful
as a general diagnostic tool.



Box-Jenkins AutoRegressive Integrated Moving
Average (ARIMA) Models — Model Selection

®* ACF and PACF plots may be used to assist
In determining what order values to use, but
this requires a high level of expertise.

®* Hyndman and Khandakar [5] give a

stepwise procedure to determine optimal
order values:

— Use a Seasonal strength test to determine if
D=0 or 1

— Use a test for stationarity (KPSS) to determine
ifd=0, 1 or 2

— With the differenced data, apply a stepwise
procedure to solve for p, q, P, Q selecting
models with minimum AlCec.



Example 2d: Box-Jenkins Series G — Monthly Airline
Passengers — Automatic Model Selection, Box-Cox

Transformation and Withhold Sample (Multi-Step-Ahead)

ARIMA Forecast

Ohs, Mo

Ln (Aitline Passengers)

Numeric Time Series Data (Y) >> ‘ ‘ Manthly Ailine Passenger
= 0K »>»

Cancel

Optional Time Axis Labels >> ‘ | Date

Prediction Interval

v Specifty Model Periods

Start Model at Period 1

ED

" End Model at Period

* Withhold Periods

Withhold Forecast Type:

95.0

Help

<< Remove ‘

—

4

¥ Display ACF/PACF/LB Plots

Model Options

¥ Seasonal Frequency

Mz

v Display Residual Plots
v Box-Cox Transformation

i+ Specify f* Rounded Lambda

" Select | " Optimal Lambda

=]

" Automatically Detect " Lambda & Threshold (Shift)

" One-Step-Ahead with Prediction Interval at:| Stan DfWitthIdj

I Include in Residuals

* Multi-Step-Ahead with Prediction Interval at Start of Withhhold :

*

ARIMA Model Options

* Automatic Model Selection

" Specify Model

OK »>

Cancel

dil

Hel
{+ Stepwise Procedure 2

" Extended Model Search. Time limit | 300 seconds.

Model Selection Criterion
* AICc - Akaike information criterion with small sample size correction
" AIC - Akaike information criterion

" BIC - Bayesian information criterion

" Specifty Nonseasonal Differencing (d)

o

I iSpecify Seasonal Differencing (D) | 1]

E

SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast




Example 2d: Box-Jenkins Series G — Monthly Airline

Passengers — Automatic Model Selection, Box-Cox
Transformation and Withhold Sample (Multi-Step-Ahead)
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ARIMA Model: Monthly Airline Passengers (Thousands) - Model Automatically Selected
Model Periods: Model parameter estimates calculated excluding 24 withhold periods.

ARIMA Time Series Forecasting Chart
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ARIMA Model Summary P: Esti ARIMA Model| Statistics Forecast Accuracy
AR Order (p) 0 Term Coefficient SE Coefficient T P Mo of Observations 120 Metric In-Sample (Esti Out-of Sample (Withhold)
| Order (d) 1 MA 1| 0.342313249 0.100902427 3.392517 | 0.0010 DF 105 Gn&StepJ\head Forecast Multi-Step-Ahead Forecast
MA Order (g) 1 SMA_1| 0540469465 0087677292 6.164304 | 0.0000 StDev 0.037414431 N 107 24
SAR Order (P) 0 Variance 0.00139984 RMSE 944337388 43.18833723
Sl Order (D) 1 Log-Likelihood 197.5047754 MAE 7.384036891 39.45185993
SMA Order (Q) 1 AlCc -368.7765411 MAPE 3.001604734 8.51734062
Seasonal Frequency 12 AIC -389.0095508 MASE 0.256417364 1.380687256
Include Constant 0 BIC -380.9910643
MNo. of Predictors 0
Model Selection Criterion AlCc

Box-Cox Transformation

Rounded Lambda

Lambda

0

Threshold

0

EZ

ARIMA (0,1,1) (0,1,1) automatically selected. Seasonal Frequency = 12 (Monthly data).




ARIMA with Predictors

* The ARIMA model supports continuous or
categorical predictors, similar to multiple
regression.

® In order to provide a forecast, additional predictor
(X) values must be added to the dataset prior to
running the analysis. The number of forecast
periods will be equal to the number of additional
predictor rows. Alternatively, the predictor values
from a withhold sample may be used.

® As with multiple linear regression, predictors
should not be strongly correlated.



Example 3: Daily Electricity Demand with Temperature and

Work Day Predictors — Run Charts
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SigmaXL > Time Series Forecasting > Run Chart

Example 3: Daily Electricity Demand with Predictors — ElecDaily.xlsx
Victoria, Australia, 2014.




Example 3: Daily Electricity Demand with Temperature and
Work Day Predictors — Scatterplot and Box Plot

y =0.3237x - 15.284x + 387.69

346.7 -+ R? = 0.4602 e ¥ WorkDay
326.7 - a0
306.7 1 320 -
286.7 - 300
2 2667 3
© 280 -
g
246.7 - b
a £ 260
2267 4 ¢ & §
' O 20 -
sopyd e FHENWIN T e e 0y e————
220
186.7 A
- L]
166.7 : o : ; ‘
9.800 14.800 19.800 24.800 29.800 34.800 39.800 180 -
Temp (C)
160 0 i

SigmaXL > Graphical Tools > Scatterplots
SigmaXL > Graphical Tools > Boxplots

Example 3: Daily Electricity Demand with Predictors — ElecDaily.xIsx
Victoria, Australia, 2014.




Example 3: Daily Electricity Demand with Temperature and
Work Day Predictors — ARIMA Forecast with Predictors

ARIMA with Predictors Forecast

MNumeric Time Series Data (Y) >>

Optional Time Axis Labels >>»

Optional Continuous Pred. (X} >>

Optional Categorical Pred. (X} >» ‘

Prediction Interval

[ Specifty Model Period

—
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950 %
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=
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= Gancsi |
Help
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WorkDany

¥ Display ACF/PACF/LB Plots
¥ Display Residual Plots
[ Box-Cox Transformation
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* Select | 7 - Daily
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ARIMA Model Options

* Automatic Model Selection

" Specify Model

* Stepwise Procedure

" Extended Model Search. Time limit | 300 seconds.

Model Selection Criterion
* AlICc - Akaike information criterion with small sample size correction
" AIC - Akaike information criterion

" BIC - Bayesian information criterion

I” Specify Monseasonal Differencing (d)

e

I iSpecify Seasonal Differencing {D)

| o

E

OK >>
Cancel

Help
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SigmaXL > Time Series Forecasting > ARIMA Forecast > Forecast with Predictors




Example 3: Daily Electricity Demand with Temperature and
Work Day Predictors — ARIMA Forecast with Predictors
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ARIMA Time Series Forecasting Chart
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ARIMA Model Summary Parameter Estimates
Al'zodfder dﬂm f Term Coefficient SE Coefficient T P
o {rj er (d) AR_1 -0.063223451 0.075658448 0.83564 | 04039
rder (q) 2
SAR Order (P) 5 AR 2 0.673128346 0.067270503 10.0063 | 0.0000
Sl Order (D) 0 MA_1 0.022660844 0.043288704 052348 | 06010
SMA Order (Q) 0 MA_2 0.929862871 0.039474102 23.5563 | 0.0000
S‘Tasloga'greq“e”w ; SAR_1 0.200902989 0.053912363 3.72647 | 0.0002
s O”_Sta”t SAR_2 0.402632085 0.05676416 7.09307 | 0.0000
Mo. of Predictors 3
Model Selection Criterion AlCC Temp (C) | -7.501558029 0.446008708 16.8159 | 0.0000
Box-Cox Transformation N/A TempSg 0.17890261 0.008530253 209727 | 0.0000
Lambda WorkDay_1| 30.56943168 1.295720007 235826 | 0.0000
Threshold
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